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The method to eliminate background in the case of quantitative multidimensional spectros- 
copy, chromatography or any analytical 3-dimensional technique is shown. The 3-dimensional 
signal is required to be proportional to the concentration of determined substance and the addi- 
tivity of signals should be obeyed. Eliminated background is assumed to be a low-order polyno- 
mial of two variables. The intensian method [1] is a generalization of the Beer-Lambert law, 
where a certain determinant called intensian replaces absorption and absorptivity. In practice 
there will be no need to use determinants, since usually they are replaced by expressions of few 
terms. Some details on the practical use of the method are given. 

1. I n t r o d u c t i o n  

In the last decade a great improvement took place in mult idimensional  spectros- 
copy. As yet, this spectroscopy is used in structural (e.g. two-dimensional  N M R  
spectroscopy [2,3]) and qualitative analysis (e.g. GC-MS, LC-UV/vis ,  G C - I R  [4], 
Mul t iDimensional  GC [5], GC-(Matr ix  Isolat ion)-FTIR [6], G C - F T I R - M S  [7], 
GC-(FT-NIR) - (Atomic  Emision Spectroscopy) [8,9] and m a n y  others). Soon, this 
technique will come to be routine quantitative spectroscopy and at the same time 
m a n y  problems, well known from commonly used quanti tat ive spectroscopy, will 
arise. 

In the present paper we generalize a formalism of  the (2-dimensional) intensian 
me thod  [1]. We applied this method for determination of  AH and AS values of  the 
urea-phenol  (1 : 1) complex formation [1], and we showed that  the me thod  can be 
competit ive to the curve fitting routine. This paper describes how to eliminate one 
of  the most  onerous problems of  quantitative spectroscopy, the background inter- 
ference, for the case of  3-dimensional spectroscopy. It is clear that  there are m a n y  
ways to solve this problem. Differentiation of  3-dimensional spectra, spectral back- 
g round  fitting by low-order polynomials of  two variables, 3-dimensional band fit- 
ting, and filtering with use of  a different kind of  two-dimensional  Four ier  
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transformations are some of them, which will be certainly used in the field of 3- 
dimensional spectroscopy. We expect that most of them are just used as an example 
in the field of optical holography, information theory or electronic signal filter- 
ing, but they did not yet diffuse into chemometry, since as we know, until now there 
are no published chemometric papers describing solutions to this problem. 

In this paper we use a Beer-Lambert-like law for 3-dimensional spectroscopy 
and simple linear functionals (which are in this paper always determinants) acting 
on 3-dimensional spectral domain. We define those functionals (determinants) as 
(3-dimensional) intensians (in contrast to ordinary intensians described earlier [1]). 
The 3-dimensional intensian in a generalized Beer-Lambert law plays an analo- 
gous role as absorption and absorptivity in the ordinary Beer-Lambert law. The 
intensians possess an important property: they eliminate the background surface 
and, if it is of a lower degree than the examined three-dimensional band, then a 
quantitative analysis can be performed. Since determinants are useful in theory but 
are inconvenient in practice, we have focused on developing some low-order 3- 
dimensional intensians as expressions of few terms. Knowing some simple proper- 
ties of intensians, the elimination problem might be reduced to a few operations 
of multiplications and additions. All presented properties of 3-dimensional inten- 
sians have been derived based on the fundamental knowledge about determinants 
[10] and analytic geometry [11]. However, in our opinion, using any computer pro- 
gram in calculating determinants (of order up to ca. 7 x 7) and imitating the 
scheme shown in the model example, one can use the 3-dimensional intensian 
method based only on the generalized Beer-Lambert law and the structure of the 3- 
dimensional intensian. 

2. Theory  

Assume that the intensity A (x, y) of a selected 3-dimensional spectral band of a 
substance is directly proportional to its concentration c, namely the Beer-Lambert 
law for the (chosen) 3-dimensional band is valid: 

A(x,y) =a(x,y) .b .c ,  (1) 

where 

x , y  

b 
£ 

a(x,y) 

= IR, GC, UV, NMR,  or other spectroscopic scale, 

= path length (or other measurement factor), 

= concentration, 

= intensity for b, c = 1 (absorptivity), 

A(x,y) = intensity (absorption). 

Let us assume, that the unknown background B(x, y), which interferes with the 
band of interest A(x, y), can be described as a polynomial (of two variables) of a 
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degree that does not exceed certain positive integer k, whereas A(x,y) can be 
expanded in a power series (of two variables) of a degree not less than k + 1: 

B(x,y)---- ~ t3uxiy ) , (2) 
O<~i+j<~k 

OO 

A(x,y)  ---- ~ aij~Y j, 3i , j  : i +j>~k + l, aij ¢ O. 
i,j=O 

Moreover, let us assume that spectrum S(x, y) (observed in a selected region) is a 
sum ofA (x, y) and B(x, y): 

S(x,y)  = A(x,y) + B(x,y).  (3) 

Now using any linear functional Y (assigning a value to a function of two vari- 
ables) we can express the Beer-Lambert law (1) in terms of Y: 

3r(A(x,y)) = Y(a(x,y) . b . c) = b . c .  Y(a(x,y)) . (4) 

Additivity of spectra is kept in force by such a functional too: 

~Y(S(x,y)) = ff:(A(x,y) + B(x,y)) = 5:(A(x,y)) + J:(B(x,y)). (5) 

We intend here to describe a linear functional satisfying the following condition: 

5:(B(x,y))--0 while ~Y(A(x,y)) 5 0 .  (6) 

The linear functional fulfilling eq. (6) is named by us (3-dimensional) intensian. 
It is not difficult to verify that the following determinant possesses the desired 

23-dim0C(X, y)) = 

properties: 

where 

f (x l ,Y l )  f(x2,Y2) 
1 1 

X1 X2 

Yl Y2 

4 

. . .  

O~i +j<~k = degree of polynomial B(x,y), 

f(xl ,Yl)  
Xl, Yl 
(xl, Yl) 

f ( x , y )  

= value of f (x ,  y) at point (xl, Yt), 
= value of arguments x and y, 

(Xp, yp) for l ~ p, 

denotes A (x, y), B(x, y) or S(x, y).  

f (Xm,Ym)  

1 

Xm 

Ym (7) 
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Note  that generally the order m x m of the intensian (7) should not  be lower than 
that  which results from degree k of the background to be eliminated (e.g. 
m>~0.5(k+ 1 ) (k+  2 ) +  1). However, if one knows that a particular monomial  
term is absent in the background formula, then the order of the intensian might  be 
reduced. 

It is worth noticing that in practice intensians will be used in their form (8) 
expanded according to the elements of the first row and their cofactors: 

$ 
~3-dim(f(x,y))  = ~ d i f ( x i , Y i ) ,  (8) 

i=0 

where di are cofactors o f f  (xi, Yi). 
We shall term signed minors di as intensian coefficients. 

3. M o d e l  example  o f  u s e  of  a 3 - d i m e n s i o n a l  i n t e n s i a n  

For simplicity, an example will be given in cases where a 3-dimensional spectral 
band A (x, y) is interfered by a background plane B(x, y). Let us imagine that we 
perform a GC-IR quantitative analysis and that we determine a certain ester 
(component  of  complex mixture) based on its C=O stretching vibration band. Let 
the 3-dimensional band of this ester for standard conditions (c = 1, b = 1) be of a 
Lorentzian shape: 

a(x,y) ----- 0.9(1 + [(1730 - x)/5] 2 + [(100 - y)/212) -1 , 

where 

x = IR abscissa, 

y = GC abscissa, 

(1730, 100) = maximum abscissa, 

0.9 = intensity in maximum, 

5 --- half of the band width in intersection perpendicular to the IR 

abscissa, 

2 = half of the band width in intersection perpendicular to the GC 

abscissa. 

(1) Let us calculate a 3-dimensional 4-point intensian for standard conditions. 
First, we select four points, e.g. (1730, 100); (1740, 102); (1735, 100); (1725, 98). 
Next, note that  those points are placed at vertices of the parallelogram. Thus from 
property (a) of4-point  intensian properties (see section 5), we know that intensian 
coefficients have equal absolute values and that the signs of  coefficients for adja- 
cent vertices are opposite. Therefore, we can put  4-1, since we can multiply both 
sides of  the generalized Beer-Lambert  law by a nonzero number.  Then, 
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J34-dim(a(c,y)) = a(1730, 100) - a(1740, 102) + a(1735, 100) - a(1725, 98) 

= 0 . 9 0 -  0.15 + 0 . 4 5 -  0.30 = 0.90. 

(2) Let the background in the region of  interest be described by the plane 

B(x,  y) = 0.001x + 0.005y - 22.000. 

I f  the concentrat ion of  our ester in the analysed mixture is 0.7, then the contribu- 
tions of  the ester spectrum and background spectrum at the selected points are as 
follow: 

A(1730, 100) = 0.630; 

A(1740, 102) = 0.105; 

A(1735, 100) = 0.315; 

A(1725, 98) = 0.210; 

B(1730, 100) = 0.30 ; 

B(1740, 102) = 0.50; 

B(1735, 1 0 0 ) = 0 . 3 5 ;  

B(1725, 98) = 0 . 1 5 ;  

and the intensities of  the spectrum S(x,  y) at the selected points are as follow: 

S(1730, 100) = 0.630 + 0.30 = 0.930; 

S(1740, 102) = 0.105 + 0.50 = 0.605 ; 

S(1735, 100) = 0.315 +0 .35  = 0.665; 

S(1725,98) = 0.210 + 0.15 = 0.360. 

(3) N o w  we calculate the 4-point intensian of  the spectrum S(x,  y): 

23-d im(S(x ,y ) )  - -  0.930 - 0.605 + 0.665 - 0.360 = 0.630. 

(4) We calculate the concentrat ion of the substance f rom the generalized Beer-  
Lamber t  law (for b = 1): 

234-dim( s ( x ,  y) ) = :J34-dim(a(x, y) ) . c . b,  

then, since b = 1, we obtain 

234-dim(s(x,y)) 0.63 
c =  - - 0 . 7 .  23-dim(a(x,y)) 0.90 

Not ice  that  the same result will be obtained for any background plane. So, we do 
not  need to know nor  estimate the plane equation in contrast  to background 
approximat ion methods.  

4. General properties of  3-dimensional intensians 

The intensian (7) as a determinant  of  a matrix is linear with respect to each of  
its row, thus we have 

:]3-dim(s(x,y)) : ~3-dim(A(x,y)) + ~]3-dim(B(x,y)). (9) 
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Since the background  B(x, y) is of  degree ~< k, then the first row of  j3-dim (B(x, y)) 
is linearly dependent  on the remaining rows and this intensian vanishes. Linear  
dependence or the rows of  a de te rminant  :j3-dim (B(x, y)) is a fundamenta l  theoreti-  
cal reason why the m e t h o d  performs well. 

At  the same time, since the band  of  interest, A(x,y), is a funct ion of  degree 
/> k + 1, therefore ~3-dim (A (X, y)) is equal to zero only in some special si tuations.  

Hence we have 

~j3-dirn(s(x,y)) ~- ~3-d im(A(x ,y ) )  = bc~J3-dim(a(x,y)).  (10) 

We can ignore the background  B(x, y) and per form a quant i ta t ive analysis as in 
the case of  classical 1-dimensional spectrometr ical  analysis. 

2 3-dim (a(x, y)) plays the same role in formula  (9) as the absorpt ivi ty in the ordin- 
ary Bee r -Lamber t  law. 

N o w  we describe some addit ional  propert ies of  the intensian (7) which ought  to 
be taken into considera t ion when intensians are put  into practice. 

(i) I f  the points  (xi, Yi, S(xi, Yi)) of the examined spect rum S(x, y) are on the sur- 
face describable by a linear combina t ion  of  monomia l s  to be found  in the matr ix  
(7), then the intensian is singular. 

(ii) I f  n - 1 out  of  n points  (xi, yi) are on a curve (in XY plane) describable by a 
l inear combina t ion  of  monomia l s  as above, then one of  the intensian coefficients 
is s ingular  and  the surface of the desired degree cannot  be eliminated.  For  exam- 
ple, n - 1 out  of  n points  cannot  have a form (xi, axi + ~3), where a and/3  are any 
numbers .  

(iii) The Cartes ian coordinates  Z Y Z  of  a registered spect rum can be arbitrari ly 
t ransla ted by the vector [a, b, c] (a, b, c any numbers) ,  which leaves the intensian 
unaltered.  Thus,  we can always set up  the origin of  coordinates  at any point.  

(iv) I f  the de te rminan t  (7) is of  order  k x k, where k = 0.5(n 2 + 3n + 4) for 
n = 0, 1 , . . .  (e.g. k = 2, 4, 7, 11, . . . ) ,  and  every monomia l  of  the degree that  does 
not  exceed n appears  in the appropr ia te  row of  the matrix,  then any ro ta t ion  abou t  
the z axis leaves the intensian unchanged.  In those cases we can use any isometry  
of  the plane X Y  to choose the posi t ion of  coordinates.  

(v) For  intensians defined as in (iv) the general Laplace expansion of  a determi-  
nan t  enables us to find an expression for the intensians, coefficients; however,  an 
explicit fo rm of  these coefficients is ra ther  complicated.  

(vi) The  maximal  absolute measurement  error  of  an intensian can be expressed 
by 

S 

Z21(~j3-dim0c(x,y)) ) = ~ IdilnOC(xi,  Y i ) ) ,  (12) 
i=0 

where A(f(x ,  y)) is the error  connected with either the posi t ion error  or the inten- 
sity error. 

(vii) A more  detailed analysis of  the error  in the intensian value should  be based 
on an examina t ion  of  noise dis tr ibut ion funct ions in ne ighbourhoods  of  S(xi, yi). 
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If by ri we denote a random variable, defined as the difference between the meas- 
ured and the mean intensity at point (x;, y;), and by G(ri) its distribution function, 
then the distribution function of a new random variable R is defined as 

$ 

R =  ~'~ diri, (13) 
i=0 

where d i, the intensian coefficient, is a product of functions G(diri), since ri are sup- 
posed to be independent. Furthermore, if G(ri) = G(r) for i = 1 ,2 , . . .  s and G(r) is 
a normal distribution, then 

G(R) = di G(r) . (14) 

Since in practice rather lower-order intensians will be used, we can, therefore, 
now mention some more useful properties of intensians of order 4 and additionally 
some remarks on order 7. 

First, it should be noticed, that 4- and 7-point intensians fulfil the requirements 
of (iv), thus, for those intensians one can select an optimal set of rectangular coordi- 
nates X Y .  For 5- and 6-point intensians, condition (iv) is not valid and their values 
depend on the angle of rotation about the z axis. 

5. Lower -o rde r  3-dimensional intensians 

The 4-point (3-dimensional) intensian has the form 

$ 1 s 2  s3 s4 
1 1 1 1 

234-dim(S(x,y)) = , (15) 
Xl x2 x3 x4 

Yl Y2 Y3 Y4 

where Si = S(xi, yi), i = 1,2, 3, 4. 
Based on (i) we have to preclude such arrangements of Si to be placed on any 

plane (z = c~x +/3y + 3"; c~,/3, 3' any numbers). 
From (ii) we know that any three points out of four cannot be positioned on a 

straightline in the X Y  plane. 
From (iii) and (iv) we know that for any distribution of points 

(al, bl), (a2, b2), (a3, b3), (a4, b4) we can choose X Y  coordinates to obtain the fol- 
lowing set of points: (0, 0), (0, Yl ), (X2, Y2), (x3, Y3). Then 

23-dim (S(x ,  y)) = S(0, 0)- (x2(Y3 -- Yl )--X3 (y2 -- Yl))  

- S(0 ,  Yl)"  (x2Y3 - x 3 y z ) - S ( x 2 ,  Y2)" ylX3+S(x3, Y3)" ylx2.  

(16) 
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If points (xi, Yi) a r e  placed at the vertices of an arbitrary: 
(a) Parallelogram, then the absolute values of d; are equal to the product of the 

lengths of the parallelograms sides. The sign for adjacent vertices is opposite. Addi- 
tionally, the rectangular arrangement of points eliminates any function symmetri- 
cal with respect to the rectangular axis of symmetry. 

(b) Trapezoid, then di depends only on the length of its bases a and b and altitude 
h. Thus, for this trapezoid ((0, 0), (h, YI ), (h, Yl + b), (0, a)) we have 

J34-dim(s(x,y)) =h[b(S(O,O)-S(O,a))+a(S(h, yl + b ) - S ( h ,  yl))]. (17) 

(c) Deltoid ( (-a, 0), (a, 0), (0, b), (0, c)), then 

33-dim(S(x,y)) = a[(b-c)(S(-a,  O) + S(a,O)) + 2(S(O,b)c- S(O,c)b)]. (18) 

(d) Quadrilateralwith one right angle ((0, 0), (a, 0), (0, b), (c, d)), then 

33-dim( S(x, y) ) = S(O, O)(ab - bc - ad)+S(a, O)bc+S(O, b)ad-S(O, c)ab . 

(19) 

(e) If three points are placed on the vertices of an equilateral triangle and the 
fourth at an arbitrary position, then we can set b equal to 3°5a in the above formula. 
If the fourth point is placed at the centroid of this triangle, then, 

3]-dim(S(x, y)) = (2/3)3 °5a 2 [3S(0, 3 °5/3) - S(-a, O) - S(O, a) - S(O, c)]. 

(19') 

The above formula (19') seems to be optimal for a symmetrical band with its 
maximum placed at the centroid of the equilateral triangle, since the coefficient for 
this point is three times larger than for the other points. 

(f) Finally, ifyi = oexi +/3x + -y (a,/3, 7 any numbers), then 
4 

23-dim(S(x'Y)) = Z S(xi'Yi)(-1)i+l H (x j -  Xk). (20) 
i = 1  1 <<.k<j<~4 

kj~i 

For an elimination of any background of second degree one needs to use the 
7-point intensian. 

The 7-point intensian has form 

237-dim(s(x,y)) = 

$1 $2 $3 $4 & $6 
1 1 1 1 1 1 

XI X2 X3 X4 X5 X6 

Yl Y2 Y3 Y4 Y5 Y6 

XlYl x2Y2 x3Y3 x4Y4 xSy5 x6Y6 

~ ~ Y~ Y~ Y~ 

& 

1 

X7 

Y7 , 

x7Y7 

(21) 
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where & = S(xi, Yi). 
Any rotation or translation of X Y  coordinates does not perturb this 7-point 

intensian. 
If we choose the (0, 0) point as one of the seven points ((0,0), ( x l , y l ) , . . . ,  

(X6, Y6)) then the general expression for 7-point intensian coefficients has the form 
J+K+L d i =  Z ( - 1 )  cljktD,,,,p, (22) 

where O<~i~6; j ,k , l  ~ i ;O<~j<k<l  ~ 6 ; m , n , p  ~ i , j , k , l ; m < n < p , J  = j  if j < i  
and j  + 1 ifj  > i, similarly for K and L. 

4"kl = (XjYk -- yjxk)(xjyl -- yjXl)(XkYl -- ykXl) 

D , . . p  = ( X m y .  - y , , , X . ) ( X m y p  - -  - -  y . x p )  

The sum for do is composed of 20 terms and for the other coefficients, 10 terms, 
since Dojk = 0 for j ,  k = 1 , . . . ,  6. 

The choice of the arrangement of points to build a nonvanishing 7-point inten- 
sian is not an easy problem. Generally, the row S(xi, Yi) cannot be a linear combina- 
tion of other rows of 7-point intensian (21). 

If  our analyzed band has one maximum then it is natural to choose one point in 
this maximum and the other points around it. Therefore, however, it is very 
probable that such an intensian will be vanishing. For example, if the points are 
chosen on the vertices and in the middle (point (0, 0)) of a regular hexagon, then for 
a function of two variables symmetrical with respect to the (0, 0) point (e.g. 
exp(x 2 + y2)), the intensian vanishes. It is important to notice that the most signifi- 
cant (0, 0) coefficient vanishes if six points are at the vertices of a convex hexagon 
with its sides parallel in pairs. 

As an example we show one particular, simple solution to this problem. If the 
points are chosen from the following set of points ((0, 0), (c, 0), ( -c ,  0), (0, b), 
(0 , -b ) ,  (a,a), (a, -a) ) ,  then 

~l~-dim(a(x, y)) = S(0, O)8a2bc(aZb 2 + a2c 2 - c2b 2) - S(c, O)4a3b3 c)a + c) 

+ S ( - c ,  O)4a3b3c(-a + c) - S(O, b)4c3a4b - S(O, -b)4c3a4b 

+ S(a, a)4a2b3c 3 + S(a, -a)4a2b3c 3 . 

If the above formula is divided by a3b3c 3 then it has the simpler form 

2~-dim(S(x,y)) =S(O,O)8( -1 /a  + a/c 2 + a/b 2) - S(c,O)4(a/c 2 + l /c )  

+ S(c ,O)4( -a /c  2 + l /c)  - S(O,b)aa/b 2 - S (O , -b )na /b  2 

+ S(a ,a)4/a  + S ( a , - a ) 4 / a .  

If an analyzed band is not a symmetrical one, or if there is any other reason to 
chose points not as regular as in the above example, then one should try various sets 
of points to maximize the intensian value. 
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With increasing order of the intensian, not only does the computation of coeffi- 
cients become more arduous, but also it is more difficult to arrange points to be 
not describable by a linear combination ofmonomials from the intensian. 

6. Conc lud ing  remarks  

In this paper we have formulated a general solution for the background elimina- 
tion in the case of 3-dimensional spectroscopy. We described more important 
properties of the general solution and particular solutions for the elimination of 
any plane and background of the second degree. 

The intensian method can easily be applied in laboratory practice, since a stan- 
dard determinant calculation program can be used for its applications. 

Using the intensian method we do not need to know nor estimate the back- 
ground equation and it is enough to know (or assume) its order. If the background 
degree is assumed correctly then the concentrations of a sample obtained, based 
on two different intensians, are the same. 

If there is a need to eliminate a noise then an arithmetic mean of intensians can 
be applied, since it is an intensian taken for arithmetic means of points [1]. 

It should be noted here that any background surface interfering with a 
3-dimensional band might be eliminated using ordinary (intensian) methods of 
background elimination for (two) intersections of a 3-dimensional band. Such a 
solution has, however, an important weakness - it always requires more measure- 
ments than in an adequate 3-dimensional method and, as a consequence, has a lar- 
ger influence of noise. For example, to eliminate any plane we need to measure 
the signal intensity in four points, whereas the 2-dimensional intensian method 
offers us measurements in 6 points, three for each intersection. 

We showed that the 2-dimensional intensian method was competitive to the 
band fitting procedure [1] but certainly less complicated in use. We expect that the 
same will hold true for the 3-dimensional intensian method. 

Finally, it is quite easy to generalize the intensian method for more than 
3-dimensional spectroscopy, but first the 3-dimensional version should be carefully 
tested in practice. 

Acknowledgements  

We wish to thank Prof. A.P. Mazurek from the Drug Institute for profound dis- 
cussions. We also thank G.J. Strzemecki for helpful discussions. This work was 
supported by the Ministry of the National Education Research Program CPBP 01. 
17No. 03.02. 

Index of  used symbols 

x, y UV, IR, GC, N M R  or other scale, 
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A(x,y) 
a(x,y) 
B(x,y) 
S(x,y) 
f (x ,y)  
(xi ,Yi)  

f(xi,Yi) 
Si 
b 
c 

OLij, .[~ij 
x'y  
9:(') 
~3-dim(.) 

3-dim J. (-) 
di 

ri, R 
G(.) 
z 

a - f , h  
d 'k, Dm,,p 

intensity (absorption) of the 3-dimensional band of interest, 
standard intensity (absorption) of the 3-dimensional band of interest, 
intensity (absorption) of 3-dimensional background, 
intensity (absorption) of 3-dimensional multicomponent spectrum, 
auxiliary function:f (x, y) = A (x, y), B(x, y), a(x, y), S(x, y), 
selected point, i positive integer number, 
value off(x, y) in point (xi, Yi), 
value of S(x, y) in point (xi, Yi), 
pathlength, measurement coefficient, 
concentration, 
real numbers, 
real coefficients of power expansions, 
monomial of degree (i +j),  
linear functional acting on 3-dimensional spectral functions, 
3-dimensional intensian acting on 3-dimensional spectral functions, 
3-dimensional n-points intensian, 
ith intensian coefficient, cofactor of expansion of ~n 3-dim 0 c (x, y)) accord- 
ing to its first row (eq. (10)), 
absolute error, 
random variables: eqs. (13) and (14), 
(normal) distribution function, 
ordinate axis, 
abreviations for some arguments, 
abreviations defined in eq. (22). 
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